3.1.74 \(\int \frac {(c-c \sec (e+f x))^2}{(a+a \sec (e+f x))^{3/2}} \, dx\) [74]

Optimal. Leaf size=119 \[ \frac {2 c^2 \text {ArcTan}\left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {a+a \sec (e+f x)}}\right )}{a^{3/2} f}-\frac {\sqrt {2} c^2 \text {ArcTan}\left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {2} \sqrt {a+a \sec (e+f x)}}\right )}{a^{3/2} f}-\frac {2 c^2 \tan (e+f x)}{f (a+a \sec (e+f x))^{3/2}} \]

[Out]

2*c^2*arctan(a^(1/2)*tan(f*x+e)/(a+a*sec(f*x+e))^(1/2))/a^(3/2)/f-c^2*arctan(1/2*a^(1/2)*tan(f*x+e)*2^(1/2)/(a
+a*sec(f*x+e))^(1/2))*2^(1/2)/a^(3/2)/f-2*c^2*tan(f*x+e)/f/(a+a*sec(f*x+e))^(3/2)

________________________________________________________________________________________

Rubi [A]
time = 0.13, antiderivative size = 134, normalized size of antiderivative = 1.13, number of steps used = 7, number of rules used = 6, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.214, Rules used = {3989, 3972, 481, 12, 400, 209} \begin {gather*} \frac {2 c^2 \text {ArcTan}\left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {a \sec (e+f x)+a}}\right )}{a^{3/2} f}-\frac {\sqrt {2} c^2 \text {ArcTan}\left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {2} \sqrt {a \sec (e+f x)+a}}\right )}{a^{3/2} f}-\frac {c^2 \sin (e+f x) \sec ^2\left (\frac {1}{2} (e+f x)\right )}{a f \sqrt {a \sec (e+f x)+a}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(c - c*Sec[e + f*x])^2/(a + a*Sec[e + f*x])^(3/2),x]

[Out]

(2*c^2*ArcTan[(Sqrt[a]*Tan[e + f*x])/Sqrt[a + a*Sec[e + f*x]]])/(a^(3/2)*f) - (Sqrt[2]*c^2*ArcTan[(Sqrt[a]*Tan
[e + f*x])/(Sqrt[2]*Sqrt[a + a*Sec[e + f*x]])])/(a^(3/2)*f) - (c^2*Sec[(e + f*x)/2]^2*Sin[e + f*x])/(a*f*Sqrt[
a + a*Sec[e + f*x]])

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 400

Int[1/(((a_) + (b_.)*(x_)^(n_))*((c_) + (d_.)*(x_)^(n_))), x_Symbol] :> Dist[b/(b*c - a*d), Int[1/(a + b*x^n),
 x], x] - Dist[d/(b*c - a*d), Int[1/(c + d*x^n), x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0]

Rule 481

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(-a)*e^(
2*n - 1)*(e*x)^(m - 2*n + 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^(q + 1)/(b*n*(b*c - a*d)*(p + 1))), x] + Dist[e^
(2*n)/(b*n*(b*c - a*d)*(p + 1)), Int[(e*x)^(m - 2*n)*(a + b*x^n)^(p + 1)*(c + d*x^n)^q*Simp[a*c*(m - 2*n + 1)
+ (a*d*(m - n + n*q + 1) + b*c*n*(p + 1))*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, q}, x] && NeQ[b*c - a*d, 0]
 && IGtQ[n, 0] && LtQ[p, -1] && GtQ[m - n + 1, n] && IntBinomialQ[a, b, c, d, e, m, n, p, q, x]

Rule 3972

Int[cot[(c_.) + (d_.)*(x_)]^(m_.)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_.), x_Symbol] :> Dist[-2*(a^(m/2 +
 n + 1/2)/d), Subst[Int[x^m*((2 + a*x^2)^(m/2 + n - 1/2)/(1 + a*x^2)), x], x, Cot[c + d*x]/Sqrt[a + b*Csc[c +
d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0] && IntegerQ[m/2] && IntegerQ[n - 1/2]

Rule 3989

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))^(n_.), x_Symbol] :> Di
st[((-a)*c)^m, Int[Cot[e + f*x]^(2*m)*(c + d*Csc[e + f*x])^(n - m), x], x] /; FreeQ[{a, b, c, d, e, f, n}, x]
&& EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IntegerQ[m] && RationalQ[n] &&  !(IntegerQ[n] && GtQ[m - n, 0])

Rubi steps

\begin {align*} \int \frac {(c-c \sec (e+f x))^2}{(a+a \sec (e+f x))^{3/2}} \, dx &=\left (a^2 c^2\right ) \int \frac {\tan ^4(e+f x)}{(a+a \sec (e+f x))^{7/2}} \, dx\\ &=-\frac {\left (2 a c^2\right ) \text {Subst}\left (\int \frac {x^4}{\left (1+a x^2\right ) \left (2+a x^2\right )^2} \, dx,x,-\frac {\tan (e+f x)}{\sqrt {a+a \sec (e+f x)}}\right )}{f}\\ &=-\frac {c^2 \sec ^2\left (\frac {1}{2} (e+f x)\right ) \sin (e+f x)}{a f \sqrt {a+a \sec (e+f x)}}-\frac {c^2 \text {Subst}\left (\int \frac {2}{\left (1+a x^2\right ) \left (2+a x^2\right )} \, dx,x,-\frac {\tan (e+f x)}{\sqrt {a+a \sec (e+f x)}}\right )}{a f}\\ &=-\frac {c^2 \sec ^2\left (\frac {1}{2} (e+f x)\right ) \sin (e+f x)}{a f \sqrt {a+a \sec (e+f x)}}-\frac {\left (2 c^2\right ) \text {Subst}\left (\int \frac {1}{\left (1+a x^2\right ) \left (2+a x^2\right )} \, dx,x,-\frac {\tan (e+f x)}{\sqrt {a+a \sec (e+f x)}}\right )}{a f}\\ &=-\frac {c^2 \sec ^2\left (\frac {1}{2} (e+f x)\right ) \sin (e+f x)}{a f \sqrt {a+a \sec (e+f x)}}-\frac {\left (2 c^2\right ) \text {Subst}\left (\int \frac {1}{1+a x^2} \, dx,x,-\frac {\tan (e+f x)}{\sqrt {a+a \sec (e+f x)}}\right )}{a f}+\frac {\left (2 c^2\right ) \text {Subst}\left (\int \frac {1}{2+a x^2} \, dx,x,-\frac {\tan (e+f x)}{\sqrt {a+a \sec (e+f x)}}\right )}{a f}\\ &=\frac {2 c^2 \tan ^{-1}\left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {a+a \sec (e+f x)}}\right )}{a^{3/2} f}-\frac {\sqrt {2} c^2 \tan ^{-1}\left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {2} \sqrt {a+a \sec (e+f x)}}\right )}{a^{3/2} f}-\frac {c^2 \sec ^2\left (\frac {1}{2} (e+f x)\right ) \sin (e+f x)}{a f \sqrt {a+a \sec (e+f x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 1.12, size = 128, normalized size = 1.08 \begin {gather*} \frac {c^2 \cot \left (\frac {1}{2} (e+f x)\right ) \left (\sec ^2\left (\frac {1}{2} (e+f x)\right ) \left (-1+\cos (e+f x)+\text {ArcTan}\left (\sqrt {-1+\sec (e+f x)}\right ) (1+\cos (e+f x)) \sqrt {-1+\sec (e+f x)}\right )-\sqrt {2} \text {ArcTan}\left (\frac {\sqrt {-1+\sec (e+f x)}}{\sqrt {2}}\right ) \sqrt {-1+\sec (e+f x)}\right )}{a f \sqrt {a (1+\sec (e+f x))}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(c - c*Sec[e + f*x])^2/(a + a*Sec[e + f*x])^(3/2),x]

[Out]

(c^2*Cot[(e + f*x)/2]*(Sec[(e + f*x)/2]^2*(-1 + Cos[e + f*x] + ArcTan[Sqrt[-1 + Sec[e + f*x]]]*(1 + Cos[e + f*
x])*Sqrt[-1 + Sec[e + f*x]]) - Sqrt[2]*ArcTan[Sqrt[-1 + Sec[e + f*x]]/Sqrt[2]]*Sqrt[-1 + Sec[e + f*x]]))/(a*f*
Sqrt[a*(1 + Sec[e + f*x])])

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(368\) vs. \(2(102)=204\).
time = 0.18, size = 369, normalized size = 3.10

method result size
default \(-\frac {c^{2} \sqrt {\frac {a \left (\cos \left (f x +e \right )+1\right )}{\cos \left (f x +e \right )}}\, \left (\sin \left (f x +e \right ) \cos \left (f x +e \right ) \sqrt {-\frac {2 \cos \left (f x +e \right )}{\cos \left (f x +e \right )+1}}\, \arctanh \left (\frac {\sqrt {-\frac {2 \cos \left (f x +e \right )}{\cos \left (f x +e \right )+1}}\, \sin \left (f x +e \right ) \sqrt {2}}{2 \cos \left (f x +e \right )}\right ) \sqrt {2}+\sqrt {-\frac {2 \cos \left (f x +e \right )}{\cos \left (f x +e \right )+1}}\, \ln \left (\frac {\sin \left (f x +e \right ) \sqrt {-\frac {2 \cos \left (f x +e \right )}{\cos \left (f x +e \right )+1}}-\cos \left (f x +e \right )+1}{\sin \left (f x +e \right )}\right ) \cos \left (f x +e \right ) \sin \left (f x +e \right )+\sqrt {2}\, \arctanh \left (\frac {\sqrt {-\frac {2 \cos \left (f x +e \right )}{\cos \left (f x +e \right )+1}}\, \sin \left (f x +e \right ) \sqrt {2}}{2 \cos \left (f x +e \right )}\right ) \sqrt {-\frac {2 \cos \left (f x +e \right )}{\cos \left (f x +e \right )+1}}\, \sin \left (f x +e \right )+\sin \left (f x +e \right ) \sqrt {-\frac {2 \cos \left (f x +e \right )}{\cos \left (f x +e \right )+1}}\, \ln \left (\frac {\sin \left (f x +e \right ) \sqrt {-\frac {2 \cos \left (f x +e \right )}{\cos \left (f x +e \right )+1}}-\cos \left (f x +e \right )+1}{\sin \left (f x +e \right )}\right )-2 \left (\cos ^{2}\left (f x +e \right )\right )+2 \cos \left (f x +e \right )\right )}{f \left (\cos \left (f x +e \right )+1\right ) \sin \left (f x +e \right ) a^{2}}\) \(369\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c-c*sec(f*x+e))^2/(a+a*sec(f*x+e))^(3/2),x,method=_RETURNVERBOSE)

[Out]

-c^2/f*(a*(cos(f*x+e)+1)/cos(f*x+e))^(1/2)*(sin(f*x+e)*cos(f*x+e)*(-2*cos(f*x+e)/(cos(f*x+e)+1))^(1/2)*arctanh
(1/2*(-2*cos(f*x+e)/(cos(f*x+e)+1))^(1/2)*sin(f*x+e)/cos(f*x+e)*2^(1/2))*2^(1/2)+(-2*cos(f*x+e)/(cos(f*x+e)+1)
)^(1/2)*ln((sin(f*x+e)*(-2*cos(f*x+e)/(cos(f*x+e)+1))^(1/2)-cos(f*x+e)+1)/sin(f*x+e))*cos(f*x+e)*sin(f*x+e)+2^
(1/2)*arctanh(1/2*(-2*cos(f*x+e)/(cos(f*x+e)+1))^(1/2)*sin(f*x+e)/cos(f*x+e)*2^(1/2))*(-2*cos(f*x+e)/(cos(f*x+
e)+1))^(1/2)*sin(f*x+e)+sin(f*x+e)*(-2*cos(f*x+e)/(cos(f*x+e)+1))^(1/2)*ln((sin(f*x+e)*(-2*cos(f*x+e)/(cos(f*x
+e)+1))^(1/2)-cos(f*x+e)+1)/sin(f*x+e))-2*cos(f*x+e)^2+2*cos(f*x+e))/(cos(f*x+e)+1)/sin(f*x+e)/a^2

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c-c*sec(f*x+e))^2/(a+a*sec(f*x+e))^(3/2),x, algorithm="maxima")

[Out]

integrate((c*sec(f*x + e) - c)^2/(a*sec(f*x + e) + a)^(3/2), x)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 246 vs. \(2 (108) = 216\).
time = 2.81, size = 585, normalized size = 4.92 \begin {gather*} \left [-\frac {4 \, c^{2} \sqrt {\frac {a \cos \left (f x + e\right ) + a}{\cos \left (f x + e\right )}} \cos \left (f x + e\right ) \sin \left (f x + e\right ) - \sqrt {2} {\left (a c^{2} \cos \left (f x + e\right )^{2} + 2 \, a c^{2} \cos \left (f x + e\right ) + a c^{2}\right )} \sqrt {-\frac {1}{a}} \log \left (\frac {2 \, \sqrt {2} \sqrt {\frac {a \cos \left (f x + e\right ) + a}{\cos \left (f x + e\right )}} \sqrt {-\frac {1}{a}} \cos \left (f x + e\right ) \sin \left (f x + e\right ) + 3 \, \cos \left (f x + e\right )^{2} + 2 \, \cos \left (f x + e\right ) - 1}{\cos \left (f x + e\right )^{2} + 2 \, \cos \left (f x + e\right ) + 1}\right ) + 2 \, {\left (c^{2} \cos \left (f x + e\right )^{2} + 2 \, c^{2} \cos \left (f x + e\right ) + c^{2}\right )} \sqrt {-a} \log \left (\frac {2 \, a \cos \left (f x + e\right )^{2} + 2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (f x + e\right ) + a}{\cos \left (f x + e\right )}} \cos \left (f x + e\right ) \sin \left (f x + e\right ) + a \cos \left (f x + e\right ) - a}{\cos \left (f x + e\right ) + 1}\right )}{2 \, {\left (a^{2} f \cos \left (f x + e\right )^{2} + 2 \, a^{2} f \cos \left (f x + e\right ) + a^{2} f\right )}}, -\frac {2 \, c^{2} \sqrt {\frac {a \cos \left (f x + e\right ) + a}{\cos \left (f x + e\right )}} \cos \left (f x + e\right ) \sin \left (f x + e\right ) + 2 \, {\left (c^{2} \cos \left (f x + e\right )^{2} + 2 \, c^{2} \cos \left (f x + e\right ) + c^{2}\right )} \sqrt {a} \arctan \left (\frac {\sqrt {\frac {a \cos \left (f x + e\right ) + a}{\cos \left (f x + e\right )}} \cos \left (f x + e\right )}{\sqrt {a} \sin \left (f x + e\right )}\right ) - \frac {\sqrt {2} {\left (a c^{2} \cos \left (f x + e\right )^{2} + 2 \, a c^{2} \cos \left (f x + e\right ) + a c^{2}\right )} \arctan \left (\frac {\sqrt {2} \sqrt {\frac {a \cos \left (f x + e\right ) + a}{\cos \left (f x + e\right )}} \cos \left (f x + e\right )}{\sqrt {a} \sin \left (f x + e\right )}\right )}{\sqrt {a}}}{a^{2} f \cos \left (f x + e\right )^{2} + 2 \, a^{2} f \cos \left (f x + e\right ) + a^{2} f}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c-c*sec(f*x+e))^2/(a+a*sec(f*x+e))^(3/2),x, algorithm="fricas")

[Out]

[-1/2*(4*c^2*sqrt((a*cos(f*x + e) + a)/cos(f*x + e))*cos(f*x + e)*sin(f*x + e) - sqrt(2)*(a*c^2*cos(f*x + e)^2
 + 2*a*c^2*cos(f*x + e) + a*c^2)*sqrt(-1/a)*log((2*sqrt(2)*sqrt((a*cos(f*x + e) + a)/cos(f*x + e))*sqrt(-1/a)*
cos(f*x + e)*sin(f*x + e) + 3*cos(f*x + e)^2 + 2*cos(f*x + e) - 1)/(cos(f*x + e)^2 + 2*cos(f*x + e) + 1)) + 2*
(c^2*cos(f*x + e)^2 + 2*c^2*cos(f*x + e) + c^2)*sqrt(-a)*log((2*a*cos(f*x + e)^2 + 2*sqrt(-a)*sqrt((a*cos(f*x
+ e) + a)/cos(f*x + e))*cos(f*x + e)*sin(f*x + e) + a*cos(f*x + e) - a)/(cos(f*x + e) + 1)))/(a^2*f*cos(f*x +
e)^2 + 2*a^2*f*cos(f*x + e) + a^2*f), -(2*c^2*sqrt((a*cos(f*x + e) + a)/cos(f*x + e))*cos(f*x + e)*sin(f*x + e
) + 2*(c^2*cos(f*x + e)^2 + 2*c^2*cos(f*x + e) + c^2)*sqrt(a)*arctan(sqrt((a*cos(f*x + e) + a)/cos(f*x + e))*c
os(f*x + e)/(sqrt(a)*sin(f*x + e))) - sqrt(2)*(a*c^2*cos(f*x + e)^2 + 2*a*c^2*cos(f*x + e) + a*c^2)*arctan(sqr
t(2)*sqrt((a*cos(f*x + e) + a)/cos(f*x + e))*cos(f*x + e)/(sqrt(a)*sin(f*x + e)))/sqrt(a))/(a^2*f*cos(f*x + e)
^2 + 2*a^2*f*cos(f*x + e) + a^2*f)]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} c^{2} \left (\int \left (- \frac {2 \sec {\left (e + f x \right )}}{a \sqrt {a \sec {\left (e + f x \right )} + a} \sec {\left (e + f x \right )} + a \sqrt {a \sec {\left (e + f x \right )} + a}}\right )\, dx + \int \frac {\sec ^{2}{\left (e + f x \right )}}{a \sqrt {a \sec {\left (e + f x \right )} + a} \sec {\left (e + f x \right )} + a \sqrt {a \sec {\left (e + f x \right )} + a}}\, dx + \int \frac {1}{a \sqrt {a \sec {\left (e + f x \right )} + a} \sec {\left (e + f x \right )} + a \sqrt {a \sec {\left (e + f x \right )} + a}}\, dx\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c-c*sec(f*x+e))**2/(a+a*sec(f*x+e))**(3/2),x)

[Out]

c**2*(Integral(-2*sec(e + f*x)/(a*sqrt(a*sec(e + f*x) + a)*sec(e + f*x) + a*sqrt(a*sec(e + f*x) + a)), x) + In
tegral(sec(e + f*x)**2/(a*sqrt(a*sec(e + f*x) + a)*sec(e + f*x) + a*sqrt(a*sec(e + f*x) + a)), x) + Integral(1
/(a*sqrt(a*sec(e + f*x) + a)*sec(e + f*x) + a*sqrt(a*sec(e + f*x) + a)), x))

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c-c*sec(f*x+e))^2/(a+a*sec(f*x+e))^(3/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:Warning, integration of abs or sign assumes constant sign by intervals (correct if the argument is real):Ch
eck [abs(co

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\left (c-\frac {c}{\cos \left (e+f\,x\right )}\right )}^2}{{\left (a+\frac {a}{\cos \left (e+f\,x\right )}\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c - c/cos(e + f*x))^2/(a + a/cos(e + f*x))^(3/2),x)

[Out]

int((c - c/cos(e + f*x))^2/(a + a/cos(e + f*x))^(3/2), x)

________________________________________________________________________________________